Glyco-engineering for biopharmaceutical production in moss bioreactors
نویسندگان
چکیده
The production of recombinant biopharmaceuticals (pharmaceutical proteins) is a strongly growing area in the pharmaceutical industry. While most products to date are produced in mammalian cell cultures, namely Chinese hamster ovary cells, plant-based production systems gained increasing acceptance over the last years. Different plant systems have been established which are suitable for standardization and precise control of cultivation conditions, thus meeting the criteria for pharmaceutical production. The majority of biopharmaceuticals comprise glycoproteins. Therefore, differences in protein glycosylation between humans and plants have to be taken into account and plant-specific glycosylation has to be eliminated to avoid adverse effects on quality, safety, and efficacy of the products. The basal land plant Physcomitrella patens (moss) has been employed for the recombinant production of high-value therapeutic target proteins (e.g., Vascular Endothelial Growth Factor, Complement Factor H, monoclonal antibodies, Erythropoietin). Being genetically excellently characterized and exceptionally amenable for precise gene targeting via homologous recombination, essential steps for the optimization of moss as a bioreactor for the production of recombinant proteins have been undertaken. Here, we discuss the glyco-engineering approaches to avoid non-human N- and O-glycosylation on target proteins produced in moss bioreactors.
منابع مشابه
Gene Targeting for Precision Glyco-Engineering: Production of Biopharmaceuticals Devoid of Plant-Typical Glycosylation in Moss Bioreactors.
One of the main challenges for the production of biopharmaceuticals in plant-based systems is the modulation of plant-specific glycosylation patterns towards a humanized form. Posttranslational modifications in plants are similar to those in humans, but several differences affect product quality and efficacy and can also cause immune responses in patients. In the moss Physcomitrella patens high...
متن کاملCurrent achievements in the production of complex biopharmaceuticals with moss bioreactors.
Transgenic plants are promising alternatives for the low-cost and safe pathogen-free production of complex recombinant pharmaceutical proteins (molecular farming). Plants as higher eukaryotes perform posttranslational modifications similar to those of mammalian cells. However, plant-specific protein N-glycosylation was shown to be immunogenic, a fact that represents a drawback for many plant sy...
متن کاملAuthor's personal copy Moss bioreactors producing improved biopharmaceuticals
Plants may serve as superior production systems for complex recombinant pharmaceuticals. Current strategies for improving plant-based systems include the development of large-scale production facilities as well as the optimisation of protein modifications. While post-translational modifications of plant proteins generally resemble those of mammalian proteins, certain plant-specific protein-link...
متن کاملA gene responsible for prolyl-hydroxylation of moss-produced recombinant human erythropoietin
Recombinant production of pharmaceutical proteins is crucial, not only for personalized medicine. While most biopharmaceuticals are currently produced in mammalian cell culture, plant-made pharmaceuticals gain momentum. Post-translational modifications in plants are similar to those in humans, however, existing differences may affect quality, safety and efficacy of the products. A frequent modi...
متن کاملMoss-based production of asialo-erythropoietin devoid of Lewis A and other plant-typical carbohydrate determinants.
Protein therapeutics represent one of the most increasing areas in the pharmaceutical industry. Plants gain acceptance as attractive alternatives for high-quality and economical protein production. However, as the majority of biopharmaceuticals are glycoproteins, plant-specific N-glycosylation has to be taken into consideration. In Physcomitrella patens (moss), glyco-engineering is an applicabl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 5 شماره
صفحات -
تاریخ انتشار 2014